
MATH 4030 Differential Geometry
Tutorial 2, 20 September 2017

1. Find T,N,B, κ, τ of the helix α(s) =
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• We skip the step of arc length reparametrization because α is already in that
form.
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• B = T×N = det
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• τ = 〈B′, N〉 = −1
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2. (HW 1 Suggested problem Q10) By considering a rigid motion of R2, we assume
p = 0. For each t ∈ I, if α(t) 6= 0, then from the assumption we see that α(t) is
parallel to the normal line to α at α(t), and hence that 〈α(t), α′(t)〉 = 0. If, on
the other hand, α(t) = 0, then we also have 〈α(t), α′(t)〉 = 0. Hence by HW 1
Suggested problem Q8, we conclude that |α(t)| = r which is a positive constant.
Geometrically speaking, α lies in the circle with center p and radius r > 0.

3. Read do Carmo’s book p.27-30
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