MATH 4030 Differential Geometry
Tutorial 2, 20 September 2017
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1. Find T, N, B, k, T of the helix a(s) = [ cos —,sin—, — |, s € R.
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e We skip the step of arc length reparametrization because « is already in that
form.
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2. (HW 1 Suggested problem Q10) By considering a rigid motion of R? we assume
p = 0. For each t € I, if a(t) # 0, then from the assumption we see that «(t) is
parallel to the normal line to a at a(t), and hence that («(t),a/(t)) = 0. If, on
the other hand, «(t) = 0, then we also have (a(t),a/(t)) = 0. Hence by HW 1
Suggested problem Q8, we conclude that |«(t)| = r which is a positive constant.
Geometrically speaking, « lies in the circle with center p and radius r > 0.

3. Read do Carmo’s book p.27-30



